УДК 538.911; 536.422

ДИОКСИД КРЕМНИЯ КАК ВОЗМОЖНЫЙ ТВЕРДЫЙ ХРАНИТЕЛЬ УГЛЕКИСЛОГО ГАЗА

Заводинский В.Г.1

SILICON DIOXIDE AS POSSIBLE SOLID KEEPER OF CARBON DIOXIDE Zavodinsky V.G.

Quantum mechanical calculations of the first principles were used for the modelling conjectured compound $Si_{l-x}C_xO_2$, which could be synthesized from the silicon dioxide in the form of β -cristobalite by way of partially substitution of SiO₂ complexes to molecules CO₂. The modelling shows, that the compound $Si_{l-x}C_xO_2$ is quasi-resistant, if the content of CO₂ in it doesn't exceed 37%. The conditions of the stability of ring-shaped nanoparticles, such as $Si_{6-n}C_nO_{12}$, as possible germs for the formation of $Si_{l-x}C_xO_2$ compound from molecules SiO_2 and CO_2 were also examined.

Keywords: silicon dioxide, carbon dioxide, first-principle calculations

Введение

Проблема возрастания содержания углекислого газа в атмосфере относится к числу глобальных проблем современного человечества. Один из возможных путей уменьшения растущего количества СО₂ заключается в переводе углекислого газа в твердое состояние. При этом речь идет не о молекулярном «сухом льде», в который превращается углекислый газ при его охлаждении до -56,5 ° С и который легко сублимируется при комнатной температуре, а о настоящем кристаллическом твердом состоянии. В 1999 г. в пионерской работе [1] сообщалось о синтезе (при температуре 1800 К и давлении 40 ГПа) кристаллического диоксида кремния с кварцеподобной структурой. Вскоре после этого было проведено [2] моделирование различных возможных фаз твердого CO₂ с использованием теории функционала электронной плотности и метода псевдопотенциала и сделан вывод о возможности перехода из молекулярной фазы в кварцеподобную в области от 35 до 60 ГПа. Более поздние вычисления [3] показали, что наиболее устойчивой твердой фазой СО₂ является β-кристобалит. В 2007 году продемонстрирована полимеризация CO₂ даже при комнатной температуре [4], правда, при высоком давлении — 80 ГПа. Появилось еще несколько работ как экспериментальных, так и теоретических, по исследованию перехода газообразного СО₂ в различные твердые фазы [5-8], однако главная проблема — неустойчивость кристаллического СО₂ при нормальных давлениях — остается неразрешенной. В то же время природа демонстрирует нам высокую стабильность аналогичного по структуре соединения — β кристобалита SiO₂! Возникает вопрос: нельзя ли на основе β -кристобалита SiO₂ синтезировать такое устойчивое соединение, в котором часть атомов кремния была бы заменена атомами углерода? Если ответ будет положительным, такая система может рассматриваться как возможный твердый хранитель для углекислого газа.

1. Детали вычислений

Моделирование проводилось в рамках теории функционала плотности (ТФП) [9,10] и метода псевдопотенциала [11] с использованием базиса плоских волн. ТФП, позволяющая существенно повысить эффективность решения квантово-механических задач, основана на теореме Кона-Шема [9], из которой следует, что одночастичные электронные энергии ε_i и волновые функции ψ_i (i — номер квантового состояния) могут быть найдены

¹Заводинский Виктор Григорьевич, д-р физ.-мат. наук, директор Института материаловедения Хабаровского научного центра Дальневосточного отделения РАН; e-mail: vzavod@mail.ru

из системы уравнений

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(\mathbf{r})\right)\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r}),$$

где \hbar — постоянная Планка (деленная на 2π), m — масса электрона, **r** — трехмерный вектор координат (x, y, z), V_{eff} — эффективный потенциал,

$$V_{ ext{eff}} = V_{ ext{ext}}(\mathbf{r}) + \int rac{e^2 n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d^3 \mathbf{r}' + V_{ ext{XC}}(\mathbf{r}),$$

а $V_{\rm XC}$ — обменно-корелляционный потенциал, который может быть найден в том или ином приближении. Наиболее популярными являются приближение локальной плотности (ПЛП) [12, 13] и приближение обобщенных градиентов (ПОГ) [14]. В тех случаях, когда внешний потенциал зависит от спина, для $V_{\rm XC}$ также необходимо использовать аппроксимацию, зависящую как от суммарной электронной плотности $n(\mathbf{r})$, так и по отдельности от плотности электронов со спином вверх $n_{\uparrow}(\mathbf{r})$ и спином вниз $n_{\downarrow}(\mathbf{r})$. В нашем случаем спиновая поляризация отсутствовала, и ТФП использовались в спин-ограниченном варианте.

Необходимость использования метода псевдопотенциала заключается в следующем. Если все электроны исследуемой системы включены в вычисления, V_{ext} должен включать в себя полный кулоновский потенциал ядер. При этом быстрые осцилляции волновых функций вблизи ядер, обусловленные сильным локальным потенциалом и условиями ортогональности состояний, приводят к необходимости использования очень большого набора плоских волн для их отображения. Однако остовные электроны различных атомов почти не участвуют в межатомных взаимодействиях, в которых в основном участвуют валентные электроны. Поэтому состояния остовных электронов можно считать фиксированными, и для каждого элемента можно сконструировать такой псевдопотенциал, который учитывает все вклады ядра и остовных электронов [11]. Псевдоволновые функции, соответствующие такому модифицированному потенциалу, не испытывают быстрых осцилляций вблизи ядра и не требуют большого числа плоских волн для своего представления. В расчетах межатомных взаимодействий теперь участвуют только валентные электроны, что значительно ускоряет вычисления.

Сконструированный таким образом псевдопотенциал, совпадает с истинным потенциалом в пространстве за неким радиусом, именуемым радиусом остова. Аналогичным образом каждая псевдоволновая функция совпадает с истинной волновой функцией в этой же области. И, конечно, зарядовая плотность за пределами остова должна совпадать с истинной зарядовой плотностью. Таким образом, интегралы от квадрата амплитуд истинной и псевдоволновой функций за пределами остова должны быть идентичными. Это условие называется сохранением нормы [15].

Атомные свойства элемента должны также сохраняться, включая фазовые сдвиги при рассеянии на ядре. Эти фазовые сдвиги должны быть различными для различных орбитальных моментов, поэтому в общем случае псевдопотенциал должен быть нелокальным, имеющим проекции на различные орбитальные компоненты. Часто его представляют в так называемой сепарабельной форме [16]

$$V = V_{\rm loc} + \sum_{l,m} (V_l - V_{\rm loc}) \hat{P}_{l,m}$$

где $\dot{P}_{l,m}$ — проекторы электронных волновых функции на собственные функции различных орбитальных состояний. Выбор V_{loc} условен, и он исключается из суммы соответствующих проекторов, если в качестве его используется один из V_l .

В данном случае пседопотенциалы для атомов Si,C и O находились с помощью программного пакета FHI96PP [17] по схеме Труллера-Мартинса [18]. Тестирование потенциалов, проведенное ранее [19, 20], показало их хорошую применимость для систем, содержащих оксиды кремния и углерода.

Все базовые расчеты проводились с помощью пакета FHI96md [21] с использованием градиентной аппроксимации [14]. Для моделирования замещения атомов кремния атомами углерода в решетке β -кристобалита использовалась суперячейка, содержащая 8 атомов Si и 16 атомов О. Вычисления проводились в двух специальных точках зоны Бриллюэна: (1/4, 1/4, 1/4) и (1/4, 1/4, 3/4) с набором плоских волн, ограниченных энергией 40 Ry. Равновесные положения атомов определеялись путем нахождения сил, действующих на них со стороны других атомов, и смещения их в такие позиции, где силы становились исчезающе малыми. Самосогласование по полной энергии проводилось с точность 0,005 эВ.

Рис. 1. Схема расположения атомов в решетке β-кристобаллита SiO₂. Светлые кружки — атомы кремния, темные атомы кислорода

Решетка β -кристобаллита SiO₂ показана на рис. 1 (в проекции на плоскость). Она может быть получена из алмазоподобной решетки кремния путем вставки атома кислорода в каждую связь Si-Si. Расчетная равновесная постоянная решетки SiO₂ оказалась равной 0.735 нм, что близко к экспериментальной величине 0,716 нм. Когда некоторые атомы Si заменялись на атомы C (или, иными словами, некоторые молекулы SiO₂ заменялись молекулами СО₂), вся получаемая система $Si_{1-x}C_xO_2$ релаксировала, и находилась новая равновесная постоянная решетки. Ее величина линейно уменьшается с увеличением содержания углерода и равна 0,667 нм для x = 0, 5.

2. Результаты и обсуждение

Основой работы был анализ энергетической стабильности системы $Si_{1-x}C_xO_2$ (β кристобалит SiO_2 , в котором часть атомов кремния заменена на атомы углерода). Под энергетической стабильностью понималась устойчивость системы по отношению к выходу молекул CO_2 из нее — в свободное газообразное состояние. Энергетическая схема такого выхода изображена на рис. 2.

Для анализа энергетики данной системы вычислялась средняя энергия связи E_{bind} , приходящаяся на одну молекулу диоксида (SiO₂ или CO₂), энергия внедрения E_{embed} молекулы CO₂ и энергетический барьер E_{barrier} для удаления молекулы CO₂ из решетки Si_{1-x}C_xO₂

$$E_{\text{bind}} = \frac{1}{8} \left(E(\text{Si}_{8-n}\text{C}_{n}\text{O}_{16}) - (8-n)E(\text{Si}\text{O}_{2}^{mol}) - nE(\text{CO}_{2}^{mol}) \right),$$

Рис. 2. Энергетика перехода молекулы CO₂ из твердого кремний-углеродного диоксида в молекулярное, газовое состояние

$$E_{\text{embed}} = \frac{1}{8} \left(E(\text{Si}_{8-n}\text{C}_n\text{O}_{16}) - E(\text{Si}_8\text{O}_{16}) + nE(\text{CO}_2^{solid}) - n \cdot E(\text{CO}_2^{mol}) \right),$$

$$E_{\text{barrier}} = E(\text{Si}_{8-n}\text{C}_{n}\text{O}_{16}) - E(\text{Si}_{8-n}\text{C}_{n-1}\text{O}_{14}) - E(\text{CO}_{2}^{mol}),$$

где n — число атомов углерода в суперячейке (n < 8), $E(\text{SiO}_2^{mol})$ и $E(\text{CO}_2^{mol})$ энергии свободных молекул SiO₂ и CO₂, $E(\text{SiO}_2^{mol}) = E(\text{Si}_8\text{O}_{16})/8.$

Результаты вычислений отображены на рис. 3, из которого видно, что энергия связи E_{bind} отрицательна для n < 5, что соответствует x < 0,625 в формуле $Si_{1-x}C_xO_2$. Однако в этой же точке (n = 5) равен нулю барьер E_{barrier} для выхода CO₂ из твердой системы Si_{1-x}C_xO₂. Для стабильности $Si_{1-x}C_xO_2$ необходимо (кроме условия отрицательности E_{bind}) условие $E_{\text{barrier}} > E_{\text{embed}}$. В противном случае энергия E_{embed} , высвобождающаяся при выходе одной молекулы CO_2 , будет превышать энергию E_{barrier} , необходимую для выхода следующей молекулы. Условие $E_{\text{barrier}} > E_{\text{embed}}$ удовлетворяется при $n \leq 3$, что соответствует $x \leq 0,375$. При больших концентрациях дополнительные молекулы СО₂ выделяются из твердой системы $Si_{1-x}C_xO_2$ и превращаются в газ.

Другими словами, более трети атомов кремния в β -кристобалите SiO₂ может быть заменена атомами углерода, и эта замена происходит без потери стабильности решетки. Конечно, такая стабильность не абсолютна, поскольку энергия молекулы CO₂ в системе Si_{1-x}C_xO₂ выше, чем в газе. Однако

Рис. 3. Энергетические характеристики, описывающие стабильность твердой системы $Si_{1-x}C_xO_2$, как функции содержания углерода х

Рис. 4. Схема кольца Si₃C₃O₁₂

Энергия связи на одну молекулу в кольце Si_{6-n}C_nO₁₂

	$\mathrm{Si}_5\mathrm{C}_1\mathrm{O}_{12}$	$\mathrm{Si}_4\mathrm{C}_2\mathrm{O}_{12}$	$\mathrm{Si}_3\mathrm{C}_3\mathrm{O}_{12}$
E_{bind}, \mathfrak{sB}	-1,8	-1,2	-0,5

высота барьера E_{barrier} для выхода молекулы CO₂ из Si_{1-x}C_xO₂ довольно велика и составляет 3–5 эВ, что делает систему стабильной при обычных температурах и позволяет рассматривать ее как возможное хранилище углекислого газа в твердом состоянии.

Возникает вопрос: каким образом можно переводить углекислый газ в твердое состояние? В силу чрезвычайной важности проблемы, можно надеяться, что соответствующие методы и технологии будут найдены и развиты в ближайшем будущем. Но уже сейчас можно предположить, что один из возможных путей будет связан с непосредственным синтезом твердого состояния из молекул.

Расчеты показывают, что молекулы CO₂ отталкиваются друг от друга (как и следовало ожидать). Однако две молекулы SiO₂ притягиваются друг к другу с энергией связи, равной -2, 5 эВ. Когда две молекулы SiO₂ и две молекулы CO₂ образуют кольцо, такая система SiO₂-CO₂ оказывается стабильной с энергией связи $E_{bind} = -0, 8$ эВ на молекулу. Такие же вычисления для кольца из шести молекул (рис. 4) дают сходные результаты, представленные в таблице.

Таким образом, шести-молекулярные кольца $\operatorname{Si}_{6-n} \operatorname{C}_n \operatorname{O}_{12}$ практически наполовину могут состоять из диоксида углерода, а поскольку решетка β -кристобалита построена из шести-молекулярных колец, рассмотренные наноразмерные комплексы $\operatorname{Si}_{6-n} \operatorname{C}_n \operatorname{O}_{12}$ могут играть роль зародышей твердой системы $\operatorname{Si}_{1-x} \operatorname{C}_x \operatorname{O}_2$.

Заключение

Квантово-механическое моделирование показывает, что молекулы CO_2 могут удерживаться в твердом состоянии, будучи внедренными в решетку диоксида кремния в виде β -кристобалита. Данное твердое состояние может быть устойчивым при нормальных давлениях и температурах, если содержание CO_2 не превышает 37%.

Литература

- Iota V., Yoo C.-S., Cynn H. Quartzlike Carbon Dioxide: An Optically Nonlinear Extended Solid at High Pressures and Temperatures // Science. 1999. Vol. 283. P. 1510–1513.
- Serra S., Cavazzoni C., Chiarotti G. L., Scandollo S., Tosatti E. Pressure-Induced Solid Carbonates from Molecular CO₂ by Computer Simulation // Science. 1999. Vol. 284. P. 788– 790.
- Dong J., Tomfohr J.K., Sankey O.F. Nonmolecular carbon dioxide (CO₂) solids // Science. 2000. Vol. 287. P. 11a1–11a3.
- Kume T., Ohya Y., Nagata M., Sasaki S., Shimizu H. A transformation of carbon dioxide to nonmolecular solid at room temperature and high pressure // J. Appl. Phys. 2007. Vol. 102. P. 053501–0535015.
- Santoro M., Gorelli F. A., Bini, Ruocco R. G., Scandollo S., Crichton W. A. AAmorphous silica-like carbon dioxide // Nature. 2006. Vol. 441. P. 857–860.
- Togo A., Oba F., Tanaka I. Transition pathway of CO₂ crystals under high pressures // Phys. Rev. B. 2008. Vol. 77. P. 184101–1841015.

- Iota V., Yoo C.-S., Klepeis J.-H., Jenei Z., Evans W., Cynn H. Six-fold coordinated carbon dioxide VI // Nature Materials. 2007. Vol. 6. P. 34–38.
- Montoya J. A., Rousseau R., Santoro M., Gorelli F., Scandollo S. Mixed Threefold and Fourfold Carbon Coordination in Compressed CO₂ // Phys. Rev. Lett. 2008. Vol. 100. P. 163002–1630024.
- Hohenberg H., Kohn W. Inhomogeneous Electron Gas // Phys. Rev. 1964. Vol. 136. P. B864–B871.
- Kohn W., Sham J. L. Self-Consistent Equations Including Exchange and Correlation Effects // Phys. Rev. 1965. Vol. 140. P. A1133–A1138.
- Cohen M. L., Heine V. Pseudopotential theory of cohesion and structure // In: Ehrenreich H., Seitz F., Turnbull D., editors. Solid State Physics, New York: Academic Press. 1970. Vol. 24. P. 38–249.
- Ceperley D. M., Alder B. J. Ground State of the Electron Gas by a Stochastic Method // Phys. Rev. Lett. 1980. Vol. 45. P. 566–569.
- Perdew J. P., Zunger A. Self interaction correction to density functional approximations for many electron systems // Phys. Rev. B. 1981. Vol. 23. P. 5048–5079. 14.
- Perdew J. P., Wang Y. Accurate and simple density functional for the electronic exchange energy // Phys. Rev. B. 1986. Vol. 33. P. 8800– 8802.

- Hamann D. R. General norm-conserving pseudopotentials // Phys. Rev. B. 1989. Vol. 40. P. 2980–2991.
- Kleinman L., Bylander D. M. Efficacious form for model pseudopotentials // Phys. Rev. Lett. 1982. Vol. 48. P. 1425–1428.
- Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density functional theory // Comp. Phys. Commun. 1999. Vol. 119. P. 67–165.
- Troullier N., Martins J. L. Efficient pseudopotentials for plane-wave calculations // Phys. Rev. B. 1991. Vol. 43. P. 1993–2006.
- 19. Гниденко А.А., Заводинский В.Г. Влияние кислорода на структуру и электронные свойства нанокластеров кремния Si_n (n = 5, 6, 10, 18) // Физика и техника полупроводников. 2008. Том 42. Вып. 7. С. 817–822.
- Zavodinsky V. G., Mikhailenko E. A. Quantummechanics simulation of carbon nanoclusters and their activities in reactions with molecular oxygen // Comp. Mater. Sci. 2006. Vol. 36. P. 159–165.
- Bockstedte M., Kley A., Neugebauer J., Scheffler M. Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics // Comp. Phys. Commun. 1997. Vol. 107. P. 187–238.

Ключевые слова: диоксид кремния, углекислый газ, расчеты из первых принципов

Статья поступила 17 марта 2010 г.

Институт материаловедения Хабаровского научного центра Дальневосточного отделения РАН, г. Хабаровск © Заводинский В. Г., 2010