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a b s t r a c t

Ab initio methods of the density functional theory and pseudopotentials were used to study the structure,
electronic states, total energy and tensile strength of WC nanoparticles. It has been found that the very
small particles (having less than 15 WC atomic pairs) have a cube-like NaCl structure. Particles with tri-
gonal and cubic structures have approximately the same energies in the region of 10–20 WC pairs; how-
ever, the local atomic structure keeps the NaCl-like alternation of W and C atoms. The WC15 trigonal
particle was used as a typical one to study the WC nanoparticle tensile strength. It has been found that
W and C vacancies decrease the tensile strength, but not drastically. Electronic structure of nanoparticles
looks like that of bulk fcc-WC with a large density of states at the Fermi level.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The hard alloys based on tungsten carbide are widely used as a
material for cutting tools. Recent investigations show that the
work characteristics of hard alloys improve very much due to
decreasing of the crystallite sizes to 300–500 nm [1–4]. However,
the origin of such drastic changes is not known. Furthermore, it
is not clear how the properties of the hard alloys will be changed
due to decreasing of WC crystallites to the nanometer scale. Be-
sides, there is a lack of information on the atomic and electronic
structures and mechanical properties of WC nanoparticles. It is re-
ported [5,6] that the 300–500 nm particles have a trigonal shape;
however, their internal structure is unknown. Especially, there is
no information on structure and properties of particles with the
sizes in 100 nm and smaller.

This work is devoted to the ab initio quantum–mechanical sim-
ulation of the small tungsten carbide nanoparticles (equal or less
than 1 nm in size) and to study their electronic structure and
mechanical properties. Certainly, one nanometer is too small a size
to predict correctly the properties of particles in the size of 50–
100 nm which are of interest for technology. As it is very difficult
to study larger particles with ab initio methods so I believe that
my investigation of small particles will be a useful attempt to
say something about this ‘terra incognita’.

2. Methods and approaches

The total energies, electronic structures and mechanical proper-
ties of WC nanoparticles were calculated using the density func-
tional theory (DFT) [7,8], the pseudopotential method [9] and the
plane wave basis set for presentation of wave functions.

The DFT is based on consequence of the Hohenberg and Kohn
theorem [7] from which it is follows that one-particle electron
energies ei and wave functions wi may be found from a set of
equations

� �h2

2m
r2 þ VeffðrÞ

 !
wiðrÞ ¼ eiwiðrÞ;

where Veff is an effective potential,

Veff ¼ VextðrÞ þ
Z

e2nðr0Þ
jr � r0jd

3r0 þ VXCðrÞ

and VXC is the exchange–correlation potential for which a number of
possible approximations may be made. Most popular of the approx-
imations are the local density approximation (LDA) [10,11] and
the generalized gradient approximation (GGA) [12]. In cases where
the external potential is spin dependent, an approximation must
be made to VXC, which depends on both the total electronic density
nðrÞ ¼ n " ðrÞ þ n # ðrÞ and the polarization nðrÞ ¼ n"ðrÞ�n#ðrÞ

nðrÞ , where
n " ðrÞandn # ðrÞ are the densities of spin up and spin down
electrons, respectively.

If all of the electrons in a system were explicitly included in the
calculation, Vext would be constructed from the full Coulombic
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potential of the nuclei. The rapid oscillations of the wavefunctions
near to the nucleus, due to the very strong potential in the region
and the orthogonality condition between different states, mean
that a very large basis set would be necessary. Fortunately, the core
electrons on different atoms are almost independent of the envi-
ronment surrounding the atom and that only the valence electrons
participate strongly in interactions between atoms. Thus, the core
electron states may be assumed to be fixed and a pseudopotential
may be constructed for each atomic species which takes into ac-
count the effects of the nucleus and core electrons [9]. The pseudo-
wavefunctions corresponding to this modified potential do not
exhibit the rapid oscillations of the true wavefunctions, dramati-
cally reducing the number of plane waves needed for their repre-
sentation. The calculations then need only explicitly consider the
valence electrons, offering a further saving in effort.

A pseudopotential is constructed such that it matches the true
potential outside a given radius, designated the core radius. Simi-
larly, each pseudowavefunction must match the corresponding true
wavefunction beyond this distance. In addition, the charge densi-
ties obtained outside the core region must be identical to the true
charge density. Thus, the integral of the squared amplitudes of
the real and pseudo wave functions over the core region must be
identical. This condition is known as norm-conservation [13].

The atomic properties of the element must be preserved,
including phase shifts on scattering across the core. These phase
shifts will be different for different angular momentum states
and so, in general, a pseudopotential must be non-local, with pro-
jectors for different angular momentum components. The pseudo-
potential is often represented using the separable form [14]

V ¼ V loc þ
X
l;m

ðVl � V locÞP̂l;m;

where P̂l;m are the projectors which project the electronic wave
functions onto the eigenfunctions of different angular momentum
states. The choice of Vloc is arbitrary and if it is made equal to one
of the Vl this avoids the need for the corresponding set of angular
momentum projectors.

Because pure tungsten carbide (without cobalt) is not magnetic
material I have used the spin-restricted version of DFT realized
within the FHI96md package [15] previously used with advantage
for many systems, including transition metal compositions [16–
19]. In all cases, the GGA approach to description of the ex-
change–correlation interactions has been chosen and the optimiza-
tion of the atomic geometry has been performed. The equilibrium
lattice constants and bulk modules were calculated using Murnag-
ham equation of state [20].

In this work, I used the pseudopotentials of carbon constructed
with the FHI98PP package [21] in the scheme of Troullier and Mar-
tins [22], but for tungsten, I used the scheme of Hamann [13].
Pseudopotentials were constructed using an ab initio procedure.
The true wavefunctions were calculated for an isolated atom using
an all-electron DFT approach. The resulting valence wavefunctions
were then modified in the core region to remove the oscillations
while obeying the norm-conservation constraint. The Schrödinger
equation was then inverted to find the pseudopotential which will
reproduce the pseudowavefunctions. This procedure produces
pseudopotentials which may be transferred between widely vary-
ing systems. All these pseudopotentials are separable, transferable,
and norm-conserving ones. They were checked for the absent of
the so-called ‘ghost’ states and used for determining the equilib-
rium lattice parameters and the bulk elastic modulus of WC. The
parameters of pseudopotentials are listed in Table 1.

The FHI96md package operates with periodic wave functions.
Thus, to investigate nanoparticles I used cubic 30–40 a.u. super-
cells (1 a.u. is equal to 0.0529 nm) those were large enough to
study nanoparticles up to 1 nm of size as single, noninteracting

Table 1
Critical radii of the s, p, and d components (rs, rp, rd), and types of local parts (lloc) of
pseudopotentials.

Element rs (Å) rp, (Å) rd, (Å) lloc

W 1.57 1.78 0.88 s
C 1.50 1.50 1.50 d
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Fig. 1. Calculated densities of states for hexagonal (hex-WC) and cubic (fcc-WC)
tungsten carbide. Vertical dotted line shows the Fermi level.
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Fig. 2. Atomic schemes of WC nanoparticles with cubic (A) and trigonal (B)
structure. Small black circles are C atoms, large gray circles are W atoms. The low
panel represents dependence of the binding energy (per WC pair) on the structure
and the size of WC nanoparticles.
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particles. In the majority of cases (except bulk calculations) I used
one point in the Brillouin zone, namely, the C-point (0, 0, 0). For
bulk calculations, the Monkhorst and Pack schemes [23]
(3 � 3 � 3 and 5 � 5 � 5) were implemented with the number of
k-points up to 27. The energy cutoff for the plane wave set was
equal to 40 Ry. The self-consistence convergence was provided
by stabilizing the total energy with an accuracy of 0.005 eV.

3. Results and discussions

3.1. Bulk calculations

It is assumed that the bulk tungsten carbide structure is well
known. The hexagonal WC is stable under 2525 �C and the fcc
NaCl-like WC structure is stable above this temperature [24].

For hex-WC I have found the lattice constant a of 2.92 ÅA
0

, the
cohesive energy Ecoh of 9.69 eV, and the bulk module B of
388 GPa: experimental values are a = 2.91 ÅA

0

, Ecoh = 8.34 eV, and
B = 331 GPa [25]. Published theoretical data lay in the intervals of
2.88–2.92 ÅA

0

, 379–413 GPa, and 8.14–9.72 eV, respectively [26].
For cubic fcc-WC I have calculated a = 4.39 ÅA

0

and Ecoh = 8.89 eV.
Respective published values are 4.29–4.38 ÅA

0

and 7.71–9.46 eV,
respectively [28].

Besides I have calculated the densities of electronic states (DOS)
and plotted them in Fig. 1. The DOS for hex-WC and fcc-WC look
very much like the literature data [25,27,28]. The main difference
of the fcc DOS from the hex one consists of different densities of
states at the Fermi level. Namely, in the hex case the Fermi level
is situated close to a minimum while in the fcc case its position lies
near a maximum.

3.2. Atomic structures and electronic states of nanoparticles

There is experimental and theoretical information [5,6,28–33]
that tungsten carbide crystals are trigonal rather than hexagonal.
However, it is unknown what the atomic structure of WC nanopar-
ticles, their electronic structure and their properties are.

I have studied stoichiometric particles with the number (N) of
WC pairs from 2 up to 40 (with the linear size from 0.2 to 1 nm)
and have compared their binding energies per WC pair. First I
have found that the NaCl-like bonding is preferable for all stud-
ied WC structures. Hexagonal particles with the bulk-like (layer
by layer) W and C ordering are not stable: they are transformed
spontaneously to triangular ones with the NaCl ordering. Trian-
gular particles compete with the particles having a cubic symme-
try: for N < 15 the cubic particles are preferable but for N > 15
the triangular ones demonstrate the energy gain. Atomic
schemes of some studied particles with cubic and trigonal sym-
metry are shown in Fig. 2A and B and the dependence of the
binding energy on the structure and size of particles is plotted
in Fig. 2C.

Despite of the W–C bonding in nanoparticles has the same Na–
Cl type as in bulk fcc-WC, the lengths of W–C bonds in nanopar-
ticles are different from the bulk ones. Namely, in the relaxed
WC15 trigonal particle the W–C distances are varied from 1.98
to 2.20 Å, in the relaxed WC24 cubic particle the corner distances
are equal to 1.98 Å, and they increase up to 2.40 Å when going to
the center of the particle. At the whole, the average W–C dis-
tances (d(W–C)av) in trigonal particles are less than in cubic ones
(Table 2). Besides, the average W–C distances in trigonal particles
stabilize quickly to the 2.04 Å, while in the cubic particles they
have a tendency to growth up to the bulk value of 2.20 Å. Perhaps

Table 2
The average W–C distances d(W–C)av in cubic and trigonal WC particles.

(Å) WC6 WC15 WC24 WC36

Cubic Trigonal Cubic Trigonal Cubic Trigonal Cubic Trigonal

d(W–C)av 2.07 1.98 2.11 2.04 2.12 2.04 2.13 2.04
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Fig. 3. The densities of states for the WC cubic and trigonal nanoparticles. Vertical dotted lines represent the Fermi level.
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this is a main reason why the trigonal particles become more
favorable at large particle sizes.

The electronic structure of WC nanoparticles is presented in
Fig. 3. The all plotted densities of states (DOS) look like the DOS
of bulk fcc-WC shown above in Fig. 1. Namely, they have a metallic
character with the position of the Fermi level near a local maxi-
mum of the DOS. One can suppose that the origin of such similarity
is the similarity of W–C bonding in all our particles (either cubic or
trigonal). This bonding is a NaCl-like, and the fcc-WC has the same
bonding.

3.3. Tensile strength

Tensile strength is one of the most important mechanical prop-
erties of tungsten carbide as a material for the cutting tools. Usu-
ally three kinds of the tensile strength tests are used: breaking
off, bending, and compression. In the case of nanoparticles, the test
for breaking off seems the most comprehensible. As trigonal parti-
cles are more stable than cubic ones, I have studied tensile strength
for the trigonal case, namely, for the WC15 particle.

To find the tensile strength I elongated (step by step) the WC15

particle along the Z axis, keeping the edge atoms and relaxing the

rest on the each step (Fig. 4). The value of strength T was calculated
through a derivation of the total energy E as a function of z:

T ¼ dE
dz
� 1

S
;

where S is an across square of the particle.
The plot of T as a function of elongation DZ is presented in Fig. 4

(A curve). The maximum point of this plot corresponds to
T = 48 GPa that is much more than known values for bulk tungsten
carbide (0.3–0.4 GPa) and hard alloys on its basis (0.5–2.0 GPa).
The breaking of the nanoparticle starts when the W–C distances
in the central part of the particle overcome 2.6 Å.

At the same Fig. 4, the plots for particles with vacancies are pre-
sented: (B) with a tungsten vacancy, (C) with a carbon vacancy, the
both situated in the central plane of the particle. One can see that
vacancies decrease the tensile strength, however, this influence is
not drastic: the factor of decreasing is of about 0.7–0.8. Thus,
defective nanoparticles keep well enough their durability in con-
trast with bulk material that can be broken easily if it has even a
small crack.

4. Conclusions

Quantum–mechanical calculations show that at subnano level
(1 nm or less) triangular particles compete with the particles hav-
ing a cubic symmetry: the cubic particles are preferable if the num-
ber of atomic WC pairs (N) less than 15, but for N > 15 the
triangular ones demonstrate the energy gain. The average W–C dis-
tances in trigonal particles stabilize quickly to the 2.04 Å, while in
the cubic particles they have a tendency to growth up to the bulk
value of 2.20 Å. Perhaps this is a main reason why the trigonal par-
ticles become more favorable at large particle sizes. Tensile
strength for nanoparticles is predicted to be 10–15 times larger
than the bulk value. Vacancies, either tungsten or carbon, decrease
the tensile strength, however, this influence is not drastic: the fac-
tor of decreasing is of about 0.7–0.8. Thus, defective nanoparticles
keep well enough their durability.

The electronic structure of WC nanoparticles looks like that of
bulk fcc-WC with the position of the Fermi level near a local max-
imum of the DOS. One can suppose that the origin of such similar-
ity is the similarity of W–C bonding in all our particles (either cubic
or trigonal). This bonding is a NaCl-like, and the fcc-WC has the
same bonding.
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