Cobalt layers crystallized on the WC(100) surface: Spin-polarized \textit{ab initio} study

V.G. Zavodinsky *

Institute for Materials Science of the Russian Academy of Sciences, 153 Tikhookeanskaya str., Khabarovsk, 680042, Russia

ARTICLE INFO

Article history:
Received 31 May 2010
Accepted 21 October 2010

Keywords:
Tungsten carbide
WC(100) surface
Coabit layers
Ab initio calculations

ABSTRACT

\textit{Ab initio} methods of the density functional theory and pseudopotentials were used for studying the structure, electronic states, binding energy and separation energy of Co layers on the WC(100) surface. It has been found that the first monolayer repeats the geometry of the WC(100) surface with the same value of the lattice constant. Comparison of three cases – A) Co atoms are above C atoms; B) Co atoms are above W atoms; C) Co atoms are above the symmetry centers between WC pairs – shows that the A case is an energetically preferable one. The second Co monolayer also repeats the \textit{fcc}-cubic WC geometry, however the distance between the first and second Co layers is less than the distance between planes in the WC cubic crystal. All Co layers are ferromagnetic ones with magnetic moments of 0.87–2.41 \(\mu_B\) dependently on the case. The density of states (DOS) for the WC/Co system looks like the superposition of those for bulk \textit{fcc}-WC and free Co layers.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The hard alloys based on tungsten carbide with cobalt cement interlayers are widely used as a material for cutting tools. Studying of atomic structure and energetics of the WC/Co interface is very important for understanding of properties of hard alloys especially for the cases when the sizes of WC crystallites aspire to 50–100 nm and the thickness of Co interlayers falls to 1–2 nm. It is known [1–4] that the smallest observed, 300–500 nm particles might have trigonal or cubic shapes with very sharp WC/Co interfaces: not larger than 1–2 nm. Quantitative analysis of the WC/Co interface for the \textit{hex}-WC crystal boundaries was performed in some works [3,5–9], however there is a lack of information on the structure of the Co boundary with the \textit{fcc}-cubic WC. The problem is strengthened by the fact that recent \textit{ab initio} calculations [10] show that the atomic structure of small trigonal nanoparticles has much in common with structure of cubic particles. Namely, boundaries of the both types of particles contain W and C atoms in the same manner as NaCl(100) surface. Therefore, the present work is devoted for studying of the Co/WC(100) interface structure and energetics, using \textit{ab initio} methods of quantum-mechanics simulation.

2. Methods and approaches

In this work, I used the same approach as in my previous paper [10]: namely, the density functional theory (DFT) [11,12] in the generalized gradient approximation (GGA) [13], the pseudopotential method [14] and the plane wave basis set. Because of cobalt magnetic nature, I have used the spin-polarized version of DFT realized within the FHI96md package [15]. I used the same pseudopotentials for carbon and tungsten as in Ref. [10]. They were generated through the FHI98PP package [16] and were tested to describe lattice constants and bulk elastic modules for WC, the both hexagonal and cubic. For cobalt, I have constructed the pseudopotential with the following parameters: \(r_g = 2.18, r_p = 2.92, r_d = 2.18, n_{\text{core}} = 1.0\). Here \(r_g, r_p, r_d\) and \(n_{\text{core}}\) are the cutoff radii for s-, p-, and d-components and \(n_{\text{core}}\) is the radius of the nonlinear core-valence correction. All values are given in atomic units (\(\text{a.u.} = 0.0529\) nm). The Co pseudopotential calculated in the scheme of Troullier–Martins [17], was checked for absence of ‘ghost’ states and was used for determining the equilibrium lattice parameter \(a_0\), magnetic moment \(M\) and the bulk elastic modulus \(B\) of bulk \textit{fcc}-Co. The values of \(a_0\) and \(B\) were found by using the Murnaghan’s equation [18], which shows the total energy \(E_{\text{tot}}(V)\) as a function of the cell volume \(V\) (\(V = a^3/4\)):

\[
E_{\text{tot}}(V) = E_{\text{tot}}(V_0) + \frac{BV}{B'(B-1)} \left[B' \left(1 - \frac{V_0}{V} \right) + \left(\frac{V_0}{V} \right)^{B'} - 1 \right],
\]

where \(V_0\) is the equilibrium value of \(V\), and \(B'\) is the derivative of \(B\) on pressure.

The calculated equilibrium values \(a_0 = 0.362\) nm, \(B = 205\) GPa, and \(M = 1.65\) \(\mu_B\) are close to experimental ones [19] (0.354 nm, 191 GPa, and 1.72 \(\mu_B\)). For these calculations I used 18 k-points of the Brillouin zone (Γ-point (0, 0, 0) with the \(3 \times 3 \times 3\) Monkhorst–Pack scheme [20]) and the energy cutoff of 50 Ry.

To investigate Co layers on the WC(100) surface I used a periodic WC slab contained seven WC layers with two WC pairs in the each layer (Fig. 2). The planar periodicity of the slab corresponded to the
have modeled the WC-Fe-Ni hard materials based on cubic WC; Christensen et al. [25] have used cubic WC as a model to study the interaction of WC with cobalt. For my knowledge, there is no detailed information on the atomic structure (relaxation effects) and electronic states of the WC(100) surface. Therefore, my first task was to study the clean WC(100) surface. For this purpose I used the WC slab shown in Fig. 2. In this study as well as in all others only two WC layers (surface and undersurface) were relaxed but internal layers were kept in their bulk positions.

Calculations have shown that surface and undersurface atoms moved from their bulk positions. Namely, carbon atoms moved outward, while tungsten atoms moved inward. Vines et al. [23] observed the same behavior of the (100) surface in the case of cubic carbides of some transition metals (MeC) and reported the values of the vertical Me–C separations ($d_1 = 0.009–0.025$ nm for the surface layer and $d_2 = 0.004–0.08$ nm for the undersurface layer, dependently on metal kind), however, they did not provide such calculations for cubic WC. My calculations give $d_1 = 0.030$ nm and $d_2 = 0.006$ nm.

Comparing the total energies of bulk crystal WC (E_{bulk}) and of the WC slab (E_{slab}) it is possible to find surface energy E_{surf}:

$$E_{\text{surf}} = \frac{(E_{\text{slab}}(N) - E_{\text{bulk}}(N))}{2}.$$

where N symbolizes that E_{bulk} and E_{slab} correspond to the same number N of WC pairs, S is the one-side surface square of the slab.

My calculations give the WC(100) surface energy of 2.14 J/m². Known reported values are 2.64 J/m² for relaxed surface [22] and 1.6 J/m² for unrelaxed [26].

Besides, I have calculated the density of electronic states (DOS) for the slab and have plotted them in Fig. 3 in comparison with the bulk data. Because the thin structure of calculated DOS depends on the size of used cell and on the number of k-points, the bulk DOS calculations were performed here by using the same cell and k-points as in the slab calculations. One can see that DOS for the slab differs from DOS for the bulk crystal mainly by two surface peaks: namely, S1 and S2 at $–4$ eV and $–11$ eV under the Fermi level.

3.2. Layers of cobalt on WC(100) surface

Energetics and electronic states of the WC(100)/Co interface was studied by Christensen et al. [6], however they ignored ferromagnetic properties of cobalt and considered only layered WC/Co systems without free surfaces. In present work I take into account spin-polarization effects and study one-monolayer and two-monolayer films in contact with free WC(100) surface. I believe that my results
will be useful for understanding of crystallization processes in nanostructured WC/Co alloys. Like Christensen et al. [6] I considered the Co/WC(100) interface as a hetero epitaxial boundary between two fcc-structures. As the fcc-WC lattice constant is larger than the cobalt lattice constant, the cobalt layers must be stretched to obtain coherent periodic structures. For the one-monolayer film I have studied three configurations (see Fig. 2): A) Co atoms are above C atoms; B) Co atoms are above W atoms; C) Co atoms are above the symmetry centers between WC pairs. Atoms of the second monolayer were placed above the first one in accordance with the fcc-symmetry. However, calculations show that the equilibrium distance between the first and second Co layers is less than the distance between planes in the WC and Co cubic crystals. Namely, these distances are equal to 0.107 nm, 0.075 nm, and 0.111 nm for the A, B, and C cases, respectively. For comparison, they are 0.220 nm for WC and 0.181 nm for Co.

For the energetic characterization of the Co/WC system I calculated the binding energy E_{bind} and the separation energy E_{sep}:

$$E_{\text{bind}}(\text{in total}) = \left(E_{\text{tot}} - E_{\text{slab}} - n \cdot E_{\text{Co}} \right) / n,$$

$$E_{\text{bind}}(\text{in layer}) = \left(E_{\text{film}} - n \cdot E_{\text{Co}} \right) / n,$$

$$E_{\text{sep}} = \left(E_{\text{tot}} - E_{\text{slab}} - E_{\text{film}} \right) / 2S,$$

where n is the number of Co atoms, E_{tot}, E_{slab}, and E_{film} are respectively energies for the Co/WC system, the WC slab, one free Co atom, and the unsupported cobalt film with the geometry corresponding to the relaxed cobalt film on the WC surface.

Calculated values of energies E_{bind}, E_{sep}, and the magnetic moment M, as well as the distance d between a Co atom and a nearest atom of the WC surface, are listed in Table 1. From these data it is clear that epitaxial layers of cobalt with atoms positioned above carbon atoms are preferable energetically. The Co binding energies, E_{bind} (in total) and E_{bind} (in layer), grow when going from 1 to 2 ML, while the separation energy (E_{sep}) decreases. The reason of decreasing of the separation energy is as follows: with the advent of the second monolayer the bonding abilities of atoms of the first monolayer become partially switched from atoms of a substrate to atoms of the second layer. This explanation prove to be true that E_{bind} (in layer) increases faster than E_{bind} (in total). It is remarkable that the results for the separation energy and cobalt-surface distances obtained in the spin-polarization approach are rather close to corresponding spin-restricted data [6]. It means that spin-restricted calculations can give us a correct enough information about WC/Co systems.

The density of electronic states (DOS) for the 1 ML cobalt film with Co atoms placed above C atoms is plotted in Fig. 4. As it is shown in this Figure, the shape of this DOS may be obtained in the whole as a sum of DOSes for bulk fcc-WC and Co layer. The main distinction consists in the sharp peak lying at 1.7 eV below the Fermi level. This peak has the same position as the position of a corresponding peak in the bulk states but its intensity is larger. The 2 ML DOS looks like the 1 ML one, and is not presented here.

4. Conclusions

Quantum-mechanics calculations show that epitaxial layers of cobalt with atoms positioned above carbon atoms are preferable energetically. The second Co monolayer repeats the fcc geometry, however the distance between the first and second Co layers is less than the distance between planes in the WC and Co cubic crystals. The binding energy grows while the separation energy decreases, when going from 1 ML to 2 ML of cobalt covering. The density of states for the WC/Co system looks like the superposition of DOSes for bulk fcc-WC and Co layers. All Co layers are ferromagnetic ones, however, the magnetization does not influence especially on their energies and geometries.

Acknowledgements

This work is supported by grants of the Russian Academy of Sciences and the Russian Foundation for Basic Researches.

References

Professor Victor Zavodinsky
Date and place of Birth: February 12, 1946, Artem-city, Primorsky Region, Russia.

Education:
1969 — M. Sc. in physics, Perm State University, Physical Department, Perm, Russia.
1997 — Doctor of Science in Physics of Condensed Matter, Far Eastern State University, Vladivostok, Russia.

Present position and address:
Director of Institute for Materials Science of the Russian Academy of Sciences, 134 Tikhookeanskaya str., Khabarovsk, 680042, Russia.

Research interests:
Quantum-mechanical simulation of atomic and electronic structures of solids and nanosystems, investigation of physical and chemical processes on surface and in bulk of solids and nanoparticles, and studying of mechanical and electrical properties of materials. The total number of publications is above 200, the personal citation index according to Web-of-Science is 1.90.